Do insect metabolic rates at rest and during flight scale with body mass?
نویسندگان
چکیده
Energetically costly behaviours, such as flight, push physiological systems to their limits requiring metabolic rates (MR) that are highly elevated above the resting MR (RMR). Both RMR and MR during exercise (e.g. flight or running) in birds and mammals scale allometrically, although there is little consensus about the underlying mechanisms or the scaling relationships themselves. Even less is known about the allometric scaling of RMR and MR during exercise in insects. We analysed data on the resting and flight MR (FMR) of over 50 insect species that fly to determine whether RMR and FMR scale allometrically. RMR scaled with body mass to the power of 0.66 (M0.66), whereas FMR scaled with M1.10. Further analysis suggested that FMR scaled with two separate relationships; insects weighing less than 10mg had fourfold lower FMR than predicted from the scaling of FMR in insects weighing more than 10mg, although both groups scaled with M0.86. The scaling exponents of RMR and FMR in insects were not significantly different from those of birds and mammals, suggesting that they might be determined by similar factors. We argue that low FMR in small insects suggests these insects may be making considerable energy savings during flight, which could be extremely important for the physiology and evolution of insect flight.
منابع مشابه
Effects of body size on the oxygen sensitivity of dragonfly flight.
One hypothesis for the small size of insects relative to vertebrates, and the existence of giant fossil insects, is that atmospheric oxygen levels constrain insect body sizes because oxygen delivery is more challenging in larger insects. This study tested this hypothesis in dragonflies by measuring the oxygen sensitivity of flight metabolic rates and behavior during hovering for 11 species of d...
متن کاملFlight substrates and their regulation by a member of the AKH/RPCH family of neuropeptides in Cerambycidae.
The pattern of metabolic changes during tethered flight with lift-generation was investigated in two South African species of long-horned beetles (family: Cerambycidae), namely Phryneta spinator and Ceroplesis thunbergi. Energy substrates were measured in haemolymph and flight muscles at rest, after a flight period of 1 min at an ambient temperature of 25-29 degrees C, and 1 h thereafter. Fligh...
متن کاملMaximum metabolic rate, relative lift, wingbeat frequency and stroke amplitude during tethered flight in the adult locust Locusta migratoria.
Flying insects achieve the highest mass-specific aerobic metabolic rates of all animals. However, few studies attempt to maximise the metabolic cost of flight and so many estimates could be sub-maximal, especially where insects have been tethered. To address this issue, oxygen consumption was measured during tethered flight in adult locusts Locusta migratoria, some of which had a weight attache...
متن کاملAllometric scaling of flight energetics in orchid bees: evolution of flux capacities and flux rates.
The evolution of metabolic pathways involved in energy production was studied in the flight muscles of 28 species of orchid bees. Previous work revealed that wingbeat frequencies and mass-specific metabolic rates decline in parallel by threefold as body mass increases interspecifically over a 20-fold range. We investigated the correlated evolution of metabolic rates during hovering flight and t...
متن کاملEnergy metabolism of eucalyptus-boring beetles at rest and during locomotion: gender makes a difference.
We studied metabolic rates during rest, maximal running exercise and tethered flight in the long-horned eucalyptus-boring beetles Phoracantha recurva and P. semipunctata. Simultaneous measurement of rates of O(2) consumption ( vdot (O2)) and CO(2) production ( vdot (CO2)) indicated that vdot (CO2) closely approximated vdot (O2) and hence was a good index of aerobic metabolic rate. The resting m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biology letters
دوره 1 3 شماره
صفحات -
تاریخ انتشار 2005